Implementation of Physical Computing to teach the fundamentals of applications programming in work contexts
DOI:
https://doi.org/10.56162/transdigital26Keywords:
BBC Micro:Bit, Computer Sciences, Fundamentals of Applications Programing, Physical ComputingAbstract
Teaching applications programming is a difficult task, since it is necessary to understand different characteristic elements of Computer Sciences, as well as the study of the syntax and grammar of programming languages. Due to this difficulty, there are currently different methodologies, techniques and approaches for the effective teaching of the fundamentals of applications programming, and one of these approaches is known as Physical Computing, which uses both electronic components (programmable cards, integrated circuits, etc.) and software components (programs, codes and applications). With the Physical Computation, satisfactory results have been obtained for teaching the fundamentals of programming. This document presents the results of the implementation of Physical Computing using the BBC Micro:Bit pocket-sized computer in a seminar implemented with 16 workers from the Computing Department and the Department of Innovation and Information Technologies of the Autonomous University of Querétaro, in a concept test focused on the consolidation of the fundamentals of applications programming, through Physical Computing. This research was of a quantitative type for the analysis of the information through pre-test and post-test questionnaires and through a Likert Scaling questionnaire to obtain the perception of the seminar participants.
References
Aguilar, L. (2008). Fundamentos de programación: algoritmos, estructuras de datos y objetos. España: McGraw-Hill/Interamericana.
Arshavskiy, M. (2014). Diseño Instruccional para Aprendizaje en Línea Guía Esencial para la Creación de Cursos Exitosos de Educación en Línea. Charleston, Carolina del Sur: Createspace Independent Pub.
Ball, T., Protzenko, J., Bishop, J., Moskal, M., de Halleux, J., Braun, M., Hodges, S. y Riley, C. (2016). Microsoft touch develop and the BBC micro:bit. Proceedings of the 38th International Conference on Software Engineering Companion - ICSE ’16, 637–640. https://doi.org/10.1145/2889160.2889179
BBC (2017). BBC micro:bit celebrates huge impact in first year, with 90% of students saying it helped show that anyone can code. Recuperado el 05 de marzo de 2020, de http://www.bbc.co.uk/mediacentre/latestnews/2017/microbit-first-year
Blikstein, P. (2013). Gears of our childhood: constructionist toolkits, robotics, and physical computing, past and future. IDC ’13 Proceedings of the 12th International Conference on Interaction Design and Children, 173–182. https://doi.org/10.1145/2485760.2485786
Blikstein, P. (2015). Computationally Enhanced Toolkits for Children: Historical Review and a Framework for Future Design. Foundations and Trends in Human– Computer Interaction, 9(1), 1–68. https://doi.org/10.1561/1100000057
Dirección de Recursos Humanos UAQ (2020a). Quiénes somos. Recuperado el 7 de marzo de 2020, de https://drh.uaq.mx/index.php/conocenos/quienes-somos
Dirección de Recursos Humanos UAQ (2020b). Coordinación de Capacitación de Personal. Recuperado el 9 de marzo de 2020, de https://drh.uaq.mx/index.php/capacitacion-depersonal
Fuentes-Rosado, J. I., y Moo-Medina, M. (2017). Dificultades de aprender a programar. Revista Educación en Ingeniería, 12(24), 76-82. https://doi.org/10.26507/rei.v12n24.728
Gibson, S., y Bradley, P. (2017). A Study of Northern Ireland Key Stage 2 Pupils’ Perceptions of Using the BBC Micro:Bit in Stem Education. The STeP Journal, 4(1), 15–41.
Gottfried, B. S. (1997). Teaching Computer Programming Effectively Using Active Learning. Age, 2(1), 1-8.
Guzmán, T., Escudero-Nahón, A., Ordaz, T., Chaparro, R. y García, T. (2016). Sistema Multimodal de Educación. Principios y lineamientos de la educación a distancia, abierta y mixta de la Universidad Autónoma de Querétaro. Recuperado el 02 de febrero de 2019, de https://www.uaq.mx/docsgrales/informatica/Sistema-Multimodal-de-educacion-UAQ.pdf
Halfacree, G. (2018). The official BBC Micro:bit user guide. Indianapolis, Ind: John Wiley and Sons, Inc.
Igoe, T. (2004). What Is Physical Computing? Recuperado el 07 de marzo de 2020, de http://www.tigoe.com/blog/what-is-physical-computing/
Isong, B. (2014). A Methodology for Teaching Computer Programming: first year students’ perspective. International Journal of Modern Education and Computer Science, 6(9), 15–21. https://doi.org/10.5815/ijmecs.2014.09.03
Luján-Mora, S., y Aragonés Ferrero, J. (2007). Técnicas didácticas novedosas en la enseñanza de programación: el caso de" Programación en Internet. Actas del XV Congreso Iberoamericano de Educación Superior en Computación, 1-9.
Marí, J. J. (2017). BBC Micro:Bit. Introducción a la mecatrónica en estudios preuniversitarios. Universidad Politécnica de Valencia.
Monk, S. (2018). Programming the BBC micro:bit Getting Started with Micropython. (M. G. Hill, Ed.). Nueva York: Mc Graw Hill Education.
Norton, P. (2006). Introducción a la computación (6a ed.). México, D.F.: Mc Graw Hill.
O’Sullivan, D., e Igoe, T. (2004). Physical Computing: sensing and controlling the physical world with computers. (Thomson, Ed.). Boston: Thomson.
Pérez, H. O., y Roig-Vila, R. (2015). Entornos de programación no mediados simbólicamente para el desarrollo del pensamiento computacional. Una experiencia en la formación de profesores de Informática de la Universidad Central del Ecuador. Revista de Educación a Distancia, (46), 1-22.
Platt, C. (2009). Make: Electronics: Learning Through Discovery. California: O’Reilly.
Pressman, R. (2010). Ingeniería del software: un enfoque práctico (7a ed.). México: McGraw-Hill.
Przybylla, M., y Romeike, R. (2014a). Key Competences with Physical Computing. Proceedings of Key Competencies in Informatics and ICT 2014, 351–361.
Przybylla, M., y Romeike, R. (2014b). Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing. Informatics in Education, 13(2), 241–254. https://doi.org/10.15388/infedu.2014.05
Rubio, M. A., Mañoso, C., y Pérez, Á. (2013). Using arduino to enhance computer programming courses in science and engineering. Proceedings of EDULEARN13 conference, 5127-5133.
Schulz, S., y Pinkwart, N. (2015). Physical computing in stem education. Proceedings of the Workshop in Primary and Secondary Computing Education, 134-135.
Sentance, S., Waite, J., Hodges, S., MacLeod, E., y Yeomans, L. (2017). “Creating Cool Stuff.” Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education - SIGCSE ’17, 531–536. https://doi.org/10.1145/3017680.3017749
Tyncan (2016). Physical Computing. Recuperado el 07 de marzo de 2020, de http://www.tyncan.com/physical-computing
Vera, E. E. (2017). Estrategias de aprendizaje autónomo para disminuir los índices de reprobación en la materia de Metodología de la Programación en la FCC de la BUAP en un sistema de E-Learning. Centro de Estudios Superiores en Educación.
Zapata, C. A. (2013). Fundamentos de programación, guía de autoenseñanza. Colombia: RA-MA Editorial.
Downloads
Autor de correspondencia
El autor de correspodencia se identifica con el siguiente símbolo: *Published
How to Cite
License
Copyright (c) 2020 Juan Riquelme, Claudia Marina Vicario, Ma. Teresa García
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles in Transdigital are licensed under a Creative Commons Attribution 4.0 International License. Authors hold the copyright and retain publishing rights without restrictions.