Uso de lenguaje R en la exploración de hallazgos neurocientíficos en México:

medioambiente y neuroeducación

Autores/as

DOI:

https://doi.org/10.56162/transdigital289

Palabras clave:

Minería de datos, Lenguaje R, Neurociencias, Neuroeducación, Metodología

Resumen

El presente estudio explora los hallazgos en neurociencias en relación con la neuroeducación y educación de investigaciones realizadas en México y/o investigadores Mexicanos. En este estudio, se buscó realizar una revisión de producción científica sobre hallazgos neurocientíficos relacionados al medio ambiente, con sus variables y su relación con la neuroeducación en México a través de la minería de datos. Se realizó mediante la utilización de Lenguaje R, con la exploración de la base de datos PubMed. Después de los, 76844 registros encontrados se realizó una diseminación con base a los objetivos de investigación, la muestra final fue de 13 artículos.  La minería de datos resultó ser una metodología de trabajo que dinamiza el análisis de documentos, a su vez, permite al investigador poder explorar con otras herramientas como el análisis de sentimientos o minería de opiniones que propician nuevas formas y oportunidades para realizar procesos de investigación con la literatura existente en la web.

Citas

Alwateer, M., Almars, A., Areed, K., Elhosseini, M., Haikal, A., & Badawy, M. (2021). Ambient Healthcare Approach with Hybrid Whale Optimization Algorithm and Naïve Bayes Classifier. Sensors, 21(13), 4579. https://doi.org/10.3390/s21134579

Biessels, G. J., Strachan, M. W., Visseren, F. L., Kappelle, L. J., & Whitmer, R. A. (2014). Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. The Lancet. Diabetes & endocrinology, 2(3), 246–255. https://doi.org/10.1016/S2213-8587(13)70088-3

Buendia-Lozada, E. (2022), github. environment_neuroeducation: https://github.com/buendiaenr1/environment_neuroeducation

Briz, R. A. & Serrano, A. A. (2018). Aprendizaje de las matemáticas a través de lenguaje de programación R en Educación Secundaria. Educación matemática, 30(1), 133-162. https://doi.org/10.24844/EM3001.05

Calderón-Garcidueñas, L., & Ayala, A. (2022). Air Pollution, Ultrafine Particles, and Your Brain: Are Combustion Nanoparticle Emissions and Engineered Nanoparticles Causing Preventable Fatal Neurodegenerative Diseases and Common Neuropsychiatric Outcomes? Environmental Science & Technology, 56(11), 6847–6856. https://doi.org/10.1021/acs.est.1c04706

Calderón-Garcidueñas, L., Stommel, E.W., Rajkumar, R.V., Mukherjee, P.S. & Ayala, A. (2021). Particulate Air Pollution and Risk of Neuropsychiatric Outcomes. What We Breathe, Swallow, and Put on Our Skin Matters. Int J Environ Res Public Health, 18(21). https://doi.org/10.3390/ijerph182111568

Carracedo, P., Puertas, R., & Marti, L. (2021). Research lines on the impact of the COVID-19 pandemic on business. A text mining analysis. J Bus Res, 132, 586-593. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562908/

Coumans, J. M. J., Danner, U. N., Intemann, T., De Decker, A., Hadjigeorgiou, C., Hunsberger, M., Moreno, L. A., Russo, P., Stomfai, S., Veidebaum, T., Adan, R. A. H., Hebestreit, A., & Family Consortium (2018). Emotion-driven impulsiveness and snack food consumption of European adolescents: Results from the I. Family study. Appetite, 123, 152–159. https://doi.org/10.1016/j.appet.2017.12.018

Chaddock-Heyman, L., Erickson, K. I., Kienzler, C., Drollette, E. S., Raine, L. B., Kao, S. C., Bensken, J., Weisshappel, R., Castelli, D. M., Hillman, C. H., & Kramer, A. F. (2018). Physical Activity Increases White Matter Microstructure in Children. Frontiers in neuroscience, 12, 950. https://doi.org/10.3389/fnins.2018.00950

Chan, D., & Galli, M. G. (2020) Aplicación de técnicas estadísticas mutivariadas con el lenguaje de programación en R en investigaciones educativas del nivel superior. RAES, 12(20), 123-136. http://www.revistaraes.net/revistas/raes20_art8.pdf

Cheng, X., Cao Q., & Liao, S. S. (2020). An overview of literature on COVID-19, MERS and SARS: Using text mining and latent Dirichlet allocation. Journal of Information Science, 48(2), 304-320. https://doi.org/10.1177/0165551520954674

Cryer, J. D. & Chan, K. S. (2008). Times series analysis with applications in R. Springer.

Ettcheto, M., Busquets, O., Cano, A., Sánchez-Lopez, E., Manzine, P. R., Espinosa-Jimenez, T., Verdaguer, E., Sureda, F. X., Olloquequi, J., Castro-Torres, R. D., Auladell, C., Folch, J., Casadesús, G., & Camins, A. (2021). Pharmacological Strategies to Improve Dendritic Spines in Alzheimer's Disease. Journal of Alzheimer's disease: JAD, 82(s1), S91–S107. https://doi.org/10.3233/JAD-201106

Fantini, D. (2019). easyPubMed: Search and Retrieve Scientific Publication Records from PubMed. R package version 2.13. https://CRAN.R-project.org/package=easyPubMed

Fuller, R., Landrigan, P., Balakrishnan, K., Bathan, G., Bose-O’Reilly, S., Brauer, M., . . . Yan, C. (2022, Mayo 17). Pollution and health: a progress update. Lancet Planet Health. https://doi.org/10.1016/S2542-5196(22)00090-0

Franco-Juárez, B., Gómez-Manzo, S., Hernández-Ochoa, B., Cárdenas-Rodríguez, N., Arreguin-Espinosa, R., Pérez de la Cruz, V., & Ortega-Cuellar, D. (2021). Effects of High Dietary Carbohydrate and Lipid Intake on the Lifespan of C. elegans. Cells, 10(9), https://doi.org/10.3390/cells10092359

Gabriel-Ortiz, G., Mireles-Ramírez, M. A., Pacheco-Moisés, F. P., Ramírez-Jirano, L. J., Bitzer-Quintero, O. K., Delgado-Lara, D. L., Flores-Alvarado, L.J., Mora-Navarro, M.A., Huerta, M. & Torres-Mendoza, B. (2021). Are electrophysiological and oligodendrocyte alterations an element in the development of multiple sclerosis at the same time as or before the immune response? International Journal of Neuroscience, 131(12), 1221-1230. https://doi.org/10.1080/00207454.2020.1786087

Horowitz, A. M., Fan, X., Bieri, G., Smith, L. K., Sanchez-Diaz, C. I., Schroer, A. B., Gontier, G., Casaletto, K. B., Kramer, J. H., Williams, K. E., & Villeda, S. A. (2020). Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science, 369(6500), 167–173. https://doi.org/10.1126/science.aaw2622

Hoyeol, K. (2022). Sentiment Analysis: Limits and Progress of the Syuzhet Package and its Lexicons. Digital Humanities Quaterly, 16(2), 1. http://www.digitalhumanities.org/dhq/vol/16/2/000612/000612.html

Ihaka, R., & Gentleman, R. (1996). R: A Language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299-314. https://doi.org/10.1080/10618600.1996.10474713

Jarero-Basulto, J., Gasca-Martínez, Y., Rivera-Cervantes, M., Ureña-Guerrero, M., Feria-Velasco, A., & Beas-Zarate, C. (2018). Interactions Between Epilepsy and Plasticity. Pharmaceuticals, 11(17). https://doi.org/10.3390/ph11010017

Jiang, W., & Chen, Y. (2022). Air Pollution, Foreign Direct Investment, and Mental Health: Evidence From China. Frontiers in public health, 10, 858672. https://doi.org/10.3389/fpubh.2022.858672

Kwartler, T. (2017). Text Mining in Practice with R. John Wiley & Sons Ltd.

Liang, Y. Y., Zhang, L. D., Luo, X., Wu, L. L., Chen, Z. W., Wei, G. H., Zhang, K. Q., Du, Z. A., Li, R. Z., So, K. F., & Li, A. (2022). All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease. Neural regeneration research, 17(6), 1210–1227. https://doi.org/10.4103/1673-5374.325012

Liu, S., Mo, C., Lei, L., Lv, F., Li, J., Xu, X., Lu, P., Wei, G., Huang, X., Zeng, X., & Qiu, X. (2023). Association of ultraprocessed foods consumption and cognitive function among children aged 4-7 years: a cross-sectional data analysis. Frontiers in nutrition, 10, 1272126. https://doi.org/10.3389/fnut.2023.1272126

Liu, C., Xie, B., Chou, C. P., Koprowski, C., Zhou, D., Palmer, P., Sun, P., Guo, Q., Duan, L., Sun, X., & Anderson Johnson, C. (2007). Perceived stress, depression and food consumption frequency in the college students of China Seven Cities. Physiology & behavior, 92(4), 748–754. https://doi.org/10.1016/j.physbeh.2007.05.068

Lu, W., Hackman, D. A., & Schwartz, J. (2021). Ambient air pollution associated with lower academic achievement among US children: A nationwide panel study of school districts. Environmental epidemiology, 5(6), e174. https://doi.org/10.1097/EE9.0000000000000174

Martínez-Leo, E., & Segura Campos, M. (2020). Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition, 71, 110609. https://doi.org/10.1016/j.nut.2019.110609

Medhat, W., Hassan, A. & Korashy (2014). Sentiment analysis algorithms an application: A survey. Ain Shams Engineering Journal, 4(5), 1093-1113. https://doi.org/10.1016/j.asej.2014.04.011

Miola, A., De Filippis, E., Veldic, M., Ho, A. M., Winham, S. J., Mendoza, M., Romo-Nava, F., Nunez, N. A., Gardea Resendez, M., Prieto, M. L., McElroy, S. L., Biernacka, J. M., Frye, M. A., & Cuellar-Barboza, A. B. (2022). The genetics of bipolar disorder with obesity and type 2 diabetes. Journal of affective disorders, 313, 222–231. https://doi.org/10.1016/j.jad.2022.06.084

Mohai, P., Kweon, B.S., Lee, S. & Ard, K. (2011). Air pollution around schools is linked to poorer student health and academic performance. Health Affairs, 30(5), 852-862. https://doi.org/10.1377/hlthaff.2011.0077

Mhatre, S. (2020). RedgateHub. Text Mining and Sentiment Analysis with R. https://www.red-gate.com/simple-talk/databases/sql-server/bi-sql-server/text-mining-and-sentiment-analysis-with-r/

Najafi, N., Movehed, K., Barzegar, Z., & Samani, S. (2018). Environmental Factors Affecting Students’ Stress in the Educational Environment: A Case Study of Shiraz Schools. International Journal of School Health, 5(2), 1-7. https://doi.org/10.5812/intjsh.67153

Nicholson, S., Baccarelli, A., & Prada, D. (2022). Role of brain extracellular vesicles in air pollution-related cognitive impairment and neurodegeneration. Environ Res, 204(Pt C), 112316. https://doi.org/10.1016/j.envres.2021.112316

Northstone, K., Joinson, C., Emmett, P., Ness, A., & Paus, T. (2012). Are dietary patterns in childhood associated with IQ at 8 years of age? A population-based cohort study. Journal of epidemiology and community health, 66(7), 624–628. https://doi.org/10.1136/jech.2010.111955

Noll, M., Noll P. R. e S., Mendonça, C. R. Dos Santos, R. A. P. & Aparecida, S. E. (2021). Effects of ultra-processed food on cognition and learning of adolescents: a rapid systematic review [version 1; peer review: peer review discontinued]. F1000Research, 10, 866. https://doi.org/10.12688/f1000research.55336.1

Øverby, N. C., Lüdemann, E., & Høigaard, R. (2013). Self-reported learning difficulties and dietary intake in Norwegian adolescents. Scandinavian Journal of Public Health, 41(7), 754–760. https://doi.org/10.1177/1403494813487449

Pánico, P., Velasco, M., Salazar, A., Picones, A., Ortiz-Huidobro, R., Guerrero-Palomo, G., Salgado-Bernabé, M. E., Ostrosky-Wegman, P., & Hiriart, M. (2022). Is Arsenic Exposure a Risk Factor for Metabolic Syndrome? A Review of the Potential Mechanisms. Frontiers in Endocrinology, 13. https://doi.org/10.3389/fendo.2022.878280

PYPL. (2024). Página oficial de The Popularity of Programming Language Index. https://pypl.github.io/PYPL.html

Riggs, L., Piscione, J., Laughlin, S., Cunningham, T., Timmons, B. W., Courneya, K. S., Bartels, U., Skocic, J., de Medeiros, C., Liu, F., Persadie, N., Scheinemann, K., Scantlebury, N., Szulc, K. U., Bouffet, E., & Mabbott, D. J. (2017). Exercise training for neural recovery in a restricted sample of pediatric brain tumor survivors: a controlled clinical trial with crossover of training versus no training. Neuro-oncology, 19(3), 440–450. https://doi.org/10.1093/neuonc/now177

Ramírez-Moreno, M., Duarte-Jurado, A., Gopar-Cuevas, Y., Gonzalez-Alcocer, A., Rodriguez-Rocha, H., & Garcia-Garcia, A. (2019, Mayo 17). Autophagy Stimulation Decreases Dopaminergic Neuronal Death Mediated by Oxidative Stress. Molecular Neurobiology, 8136–8156. https://doi.org/10.1007/s12035-019-01654-1

Reinoso Lorente, A., Vázquez Rodríguez, R., & Pérez Risquet, C. (2020). Uso del lenguaje R para el procesamiento de datos y la generación de mapas sobre COVID19. Revista Cubana de Transformación Digital, 1(3), 37-50. https://rctd.uic.cu/rctd/article/view/84/26

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/

Silge, J., & Robinson, D. (2022). Relationships between words: n-grams and correlations. Text Mining with R: A Tidy Approach. https://www.tidytextmining.com/ngrams.html

Toral-Rios, D., Pichardo-Rojas, P. S., Alonso-Vanegas, M., & Campos-Peña, V. (2020). GSK3? and Tau Protein in Alzheimer’s Disease and Epilepsy. Frontiers in Cellular Neuroscience, 14(19). https://doi.org/10.3389/fncel.2020.00019

Velásquez, H. J. D., Olaya, O. Y., & Franco, C. C. J. (2010). Análisis y predicción de series de tiempo en mercados de energía usando el lenguaje R. Dyna, 78(165), 287-296. http://www.scielo.org.co/pdf/dyna/v78n165/a30v78n165.pdf

World Health Organization. (2021) Obesity and overweight: key facts. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Xiong, X., Zhu, L. N., Dong, X. X., Wang, W., Yan, J., & Chen, A. G. (2018). Aerobic Exercise Intervention Alters Executive Function and White Matter Integrity in Deaf Children: A Randomized Controlled Study. Neural plasticity, 3735208. https://doi.org/10.1155/2018/3735208

Xu, H., Sun, Y., Wan, Y., Zhang, S., Xu, H., Yang, R., Wang, W., Zeng, H., Xu, S., Hao, J. & Tao, F. (2019). Eating pattern and psychological, symptoms: A coss-sectional study based on a national large sample of Chinese adolescents. Journal of Affective Disorders, 224(1), 155-163. https://doi.org/10.1016/j.jad.2018.10.090

Zahedi, H., Kelishadi, R., Heshmat, R., Motlagh, M. E., Ranjbar, S. H., Ardalan, G., Payab, M., Chinian, M., Asayesh, H., Larijani, B., & Qorbani, M. (2014). Association between junk food consumption and mental health in a national sample of Iranian children and adolescents: the CASPIAN-IV study. Nutrition, 30(11-12), 1391–1397. https://doi.org/10.1016/j.nut.2014.04.014

Descargas

Autor de correspondencia

El autor de correspodencia se identifica con el siguiente símbolo: *

Publicado

2024-02-29

Cómo citar

Torres-Aguilar, X., Buendia-Lozada, E. R. P., & Flores-Olvera, D. M. C. (2024). Uso de lenguaje R en la exploración de hallazgos neurocientíficos en México:: medioambiente y neuroeducación. Transdigital, 5(9), e289. https://doi.org/10.56162/transdigital289

Número

Sección

Artículo científico

Categorías